
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 12, Dec. 2023 3345
Copyright ⓒ 2023 KSII

This research was supported by Hongik Research Fund.

http://doi.org/10.3837/tiis.2023.12.007 ISSN : 1976-7277

A Case Study of Combining Two Cross-
platform Development Frameworks for

Storybook Mobile App

Beomjoo Seo
 School of Games, Hongik University

Sejong 30038, South Korea
[e-mail: bseo@hongik.ac.kr]

Received June 7, 2023; revised October 31, 2023; accepted November 13, 2023;

published December 31, 2023

Abstract

Developers often use cross-platform frameworks to create mobile apps that can run on

multiple platforms with minimal code changes. However, these frameworks may not suit all
the needs of a specific app, so developers may also use native APIs to add platform-specific
features. This method eventually dilutes the advantages of cross-platform development
methodology that aims to reduce development costs and time, and often leads to a decision to
return back to the original native mobile development methodology. In this study, we explore
a different approach: combining different cross-platform tools to develop a storybook mobile
app that meets various requirements. We have demonstrated that integrating two cross-
platform solutions can be used reliably to develop complex mobile applications. However, we
also report that this approach can introduce unforeseen issues such as sandbox redundancy,
unexpected functional burdens, and redundant permission requests. Despite these challenges,
we believe that combining two cross-platform solutions can be applied to a variety of
functional and performance requirements, enabling the development of more sophisticated
mobile applications at lower costs and with shorter development timelines than traditional
mobile app development methodologies.

Keywords: Cross-Platform, Digital Matting, Mobile App, Application Development,
Integration

3346 Seo: A Case Study of Combining Two Cross-platform
Development Frameworks for Storybook Mobile App

1. Introduction

Mobile app development companies strive to discover compelling ideas quickly, prototype
proof-of-concept apps, and implement and launch the apps in the fast-faced mobile
marketplace. However, they frequently encounter challenging implementation issues during
the development process. Small and medium-sized companies with limited financial resources
face significant challenges in allocating budgets and manpower capable of handling all the
different development environments offered by individual mobile platforms.

Mobile applications can be developed using three different approaches: native, hybrid, and
cross-platform solutions. The native approach involves building applications for specific
platforms like iOS and Android using platform-specific programming languages such as Swift
or Java. This approach offers higher performance due to the direct use of native features and
APIs, but it often results in longer development time and higher costs.

In contrast, the hybrid approach utilizes web technologies like HTML, CSS, and Javascript
to render an app within a native container like WebView. This allows for deployment on
multiple platforms, with lower development costs and faster development time than the native
approach. However, it cannot fully utilize all available native features, leading to
comparatively lower performance.

Finally, the cross-platform approach builds apps using a single codebase that can be
deployed on multiple platforms. It falls in between the native and hybrid approaches with
lower development costs and faster delivery time than the native approach, but higher cost and
slower delivery time than the hybrid approach. It also has limited access to native features, and
its performance falls between the other two approaches.

Apart from the above approaches, Progressive Web Apps (PWAs) offer an alternative
solution that creates web apps that can be deployed through the web without the need for any
app marketplaces [1]. While PWAs use the same web technologies as the hybrid approach,
they have much cheaper and shorter development costs and time, and can provide app-like
functionalities even offline, without significant quality degradation.

Nowadays, No-Code/Low-Code solutions are gaining more attention for specific targeted
mobile apps, as they allow non-technical users to create applications without requiring
extensive knowledge of programming languages [2].

While these solutions can lower the entry barrier for developers, reduce development costs,
and speed up development time, many cross-platform solutions are widely used in
development environments that require medium-to-high complexity of user requirements or
high-performance demanding. According to a 2021 survey by Statista, roughly one-third of
mobile developers use cross-platform technologies, while the rest still use native approach [3].

As cross-platform development methodologies have matured, they are getting closer to
providing user experience similar to that of native tools in terms of performance. However,
each cross-platform solution still has specific performance weaknesses in certain areas.
Companies that had actively adopted a certain cross-platform solution have reverted to native
approaches due to these vulnerabilities [4]. In this study, instead of switching back to native
solutions, we investigate whether integrating multiple cross-platforms can overcome these
issues by maximizing the benefits of a small set of single codebases for multi-platform
environments while tailoring to the strengths of each platform. We examine the effectiveness
of our proposed method in developing an interactive storybook mobile application with
varying performance requirements.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 12, December 2023 3347

This article is organized as follows. In Section 2, we review various cross-platform
development and image object extraction methodologies, which are essential concepts for our
targeting storybook mobile app. Section 3 introduces the service architecture of a mobile app
developed for this research, outlines the app’s requirements, and describe the approach used
to meet these requirements. In Section 4, we explain how image object extraction and gesture-
based image editing techniques, which are typically heavily dependent on native features, were
implemented in a cross-platform solution and integrated with another cross-platform
environment. In Section 5, we evaluate the mobile app’s real-time capabilities and explore the
reliability of the app’s complicated tasks. Finally, Section 6 summarizes the study’s findings
and presents our conclusion regarding the proposed approach.

2. Related Work

2.1 Cross-Platform Development
Biørn-Hansen et al. classified various cross-platform frameworks into five categories by their
development approaches: hybrid, interpreted, cross-compiled, model-driven, and progressive
web apps [5]. The hybrid approach uses WebView to display web contents and interact with
web applications [6]. Since the WebView includes all internet-related browsing functionalities
and is supported by all mobile platforms, mobile app developers can embed web technologies
into the WebView to add new UI-centric business logic. However, due to its suboptimal
performance output, the hybrid approach is not a popular choice for developing complex and
computationally intensive mobile applications.

The interpreted approach, such as React Native, allows developers to create mobile
applications using the Javascript language [7]. The apps are then deployed to devices with a
platform-specific Javascript interpreter, which interprets and executes the Javascript code on-
the-fly to render native user interface components on the device display. To communicate
between the Javascript code and native interface layers, it uses a bridging technique, which
can result in performance bottlenecks for apps utilizing this approach.

In contrast, the cross-compiled approach, exemplified by Flutter [8], Xamarin [9] and even
Unity3D [10] or Unreal [11] game engines, on the other hand, compiles a common language
into native byte code, resulting in near-native performance and faster app performance.
However, it may require more development effort and skill than the interpreted approach.

The model-driven approach generates an app from templates, pre-built models, or specific
description languages, abstracting all platform-specific details when building user interfaces
and application logics, and does not require knowledge of platform-dependent programming
languages. Many no-code/low-code solutions belong to this category.

Finally, progressive web apps (PWAs) approach provides users with a web app that looks
and feels similar to a native or cross-platform built app. While PWAs-powered apps can be
downloaded to run in offline mode, they cannot fully utilize all features of the underlying
mobile platform and may not meet performance requirements.

Companies developing mobile apps choose the most appropriate development solution,
such as cross-platform, native, or web app solutions, based on the requirements of the mobile
app they want to develop. Despite the maturity of their understanding and application of these
technologies, there are often situations where previously utilized solutions are no longer
suitable for evolving mobile app requirements. In such cases, companies must decide whether
to invest in their existing solutions to meet new requirements or transition to a new
development environment that better fits their needs.

3348 Seo: A Case Study of Combining Two Cross-platform
Development Frameworks for Storybook Mobile App

This study seeks to explore whether it is possible to apply a customized development
approach that selectively chooses a different development environment that fits specific
requirements while retaining the existing development environment. To achieve this, we will
conduct a case study of integrating React Native development environment, an interpreted
approach that has a broad language user base and specializes in mobile UI/UX development
while providing various native modules as needed, with Unity3D, a cross-platform
development that is widely used in mobile game development with a large developer base.

2.2 Image Matting
Our storybook app can provide mobile users with the ability to directly change the existing
contents of a story page. To extract a desired object from a camera in real time, we use digital
matting solution embedded in our target mobile application.

Matting (also widely termed as green/blue screen keying or chroma-key filtering) is a
method of separating a foreground from a rectangular background image and then synthesizing
the foreground image with a desired background. The technique has been popularly used in
various fields such as motion pictures and live streaming. Generally speaking, the separation
has been a challenging problem. As the simplest solution to this problem, blue screen matting
(or interchangeably termed, chroma key processing) has been widely used by placing a fixed
color (usually green) in the back screen to quickly extract foreground objects of interest, and
simultaneously substituting with a new background image [12]. Since the chroma key
technique is too sensitive to lighting, it is error-prone when shadows are cast that you need to
work in an environment with adequate lighting and a plain background.

Recently, the image separation technique has been evolved to accurately identify the
background of salient objects from an image using deep learning [13]. Google employs the
use of web-based machine learning technology to blur or replace existing background
surroundings in its video conferencing application, Google Meet. Its segmentation model
down-samples an incoming video frame to a low-resolution image, then feeds the image to the
segmentation model to find a segmentation mask, and finally recovers the mask as fine as
possible. The segmentation model is based on MobileNetV3-small for encoding blocks, which
reduces the model size by 50% at the expense of a small loss in weight precision, resulting in
193K parameters and 400KB in total size [14]. After the segmentation, either bilateral filtering
to smooth the segmentation mask or light wrapping for mixing the foreground and replaced
background images is applied.

As the deep learning-based image segmentation technology matured, it was immediately
applied to mobile devices and start to be used in everyday life. Apple recently announced a
‘Visual Look Up’ running on iOS 16 that allows users to tap a subject not only in an image
but also in a video frame and life it from the background. To support this, it uses the latest
hardware called Apple Neural Engine, which is optimized for energy-efficient execution of
deep neural networks on Apple devices, and a software packaged called HyperDETR, a
panoptic segmentation integrated detection transform framework to support higher output
resolution and more region proposals [15].

In this study, we aim to apply the chroma key shader-based object extraction method in a
cross-platform development environment, which is relatively easy to implement compared to
other methods, yet has a somewhat high implementation complexity that utilizes the GPU
performance embedded in mobile devices as well as various shader functions. Additionally,
we seek to find alternative solutions to address these problems.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 12, December 2023 3349

3. Design of Storybook Mobile App

This section outlines the fundamental structure of the content service for creating, distributing,
and accessing fairy stale storybooks. It also covers the usage scenario of the fairy tale mobile
app, which is integrated with this service, along with the mobile app’s requirements to support
it. Additionally, we provide a detailed analysis of how these requirements can be fulfilled.

3.1 Overview of Storybook Content Service

Fig. 1. System overview of storybook content service.

Our web-based storybook content service is based on a traditional client/server communication
model as depicted in Fig. 1. Users of this content service fall into two groups: content creators
or content consumers. Content creators can upload high-quality raw media data to the system
and organize them to create electronic storybooks. Then they distribute a newly created
storybook via a proprietary storybook marketplace and sell value-added assets such as sticker
images, animatable contents, and narration audio files or background music files that help
content users fully engaged in the storybook world. Content consumers, on the other hand,
search interesting storybooks from the service, read them, and customize them as the way the
content creators intend. The creators can specify text or image areas within e-book pages,
where the consumers change at will.

The web-based server system consists of two systems: a back-end system and a front-end
system. The back-end system manages all resources, including high-quality images, audio files,
and storybooks. Media data is stored on storage devices and its file paths are indexed in a
DBMS. The front-end system is a web-based storybook editing and publishing app that allows
content creators to create, search, read, edit, and publish. In contrast, the mobile app
component targets content consumers and allows them to purchase, play a storybook, and edit
specific areas of the book where the content creators permit replacement with a photo.

Storybooks created through the content service are stored in tuple format in the server’s
DBMS. To transmit and deliver this information to users in real-time, a special transmission
format is required. For general e-books, standardized document formats include PDF, EPUB,
MOBI, and others.

3350 Seo: A Case Study of Combining Two Cross-platform
Development Frameworks for Storybook Mobile App

However, PDF is designed for static documents and lack supports for complex animations
or interactivity. While it is possible to embed some image animations, their capabilities are
limited, and separate software is required to view and read them. On the other hand, EPUB or
MOBI is a more flexible format than PDF and supports basic interactivity and animation such
as page transitions [16]. However, they are still limited in their ability to display complex
animations and lack the native mobile-level interactivity required for mobile content.

To enable complex image animation capabilities on a page-by-page basis in a mobile
environment, it is necessary to develop a native mobile app or use a specialized format such
as HTML5. When developing in HTML5, it is recommended to utilize SVG animation
methods, but using CSS3 animations to drive SVG animations can be a performance penalty
in mobile environments. To this problem in a cross-platform environment, a way is needed to
parse the methods specified in SVG animation and programmatically translate them into an
animation library that provides optimal performance on mobile.

Fig. 2. A sample storybook in JSON format and its sample page parsed as a JSON object.

This study utilizes a proprietary file format expressed in JSON format (as shown in Fig. 2)

when collecting information stored in the DB to support the required complex image
animations for storybooks in a mobile environment. When a user requests to retrieve a
storybook, the backend system retrieves all the related object tuples from a database, builds
them on the fly as a JSON file, and sends it over the network. The newly generated JSON files
of the storybook are then stored in media storage and is served on subsequent retrieval requests.
All content related services are served as Representational State Transfer web services [17],
which the storybook authoring/publishing web app and the mobile app use to communicate.

3.2 Mobile App User Scenario
In this subsection, we will provide an overview of the user scenario for the mobile app, which
targets content consumers in the service. Fig. 3 depicts a schematic user flow design of the
mobile app.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 12, December 2023 3351

When a mobile user accesses the app, they can either sign up for membership or use the
service without any user registration as an anonymous user. Free storybook content can be
enjoyed by anonymous users, but certain features, such as image substitution or storybook
personalization, are only available for registered users.

After signing up or logging in, the user can search for any storybooks available on the
service and purchase them if they are not free. The user can choose to manually read the pages
or play them automatically, with smooth transitions between pages and narrations. During
manual reading, the user can swipe back and forth to switch pages or use the thumbnail list of
all pages to navigate to a specific page. While playing the pages automatically, the user can
play, pause, resume or rewind playback by swiping at any time. All animatable images are
displayed during playback, synchronized with the original content creators’ intentions.

Fig. 3. Schematic user flow diagram for a storybook mobile app.

The mobile app also allows users to enter into an editing mode by tapping the screen while
reading or playing. In this mode, users can purchase sticker images or stick image packs from
the content marketplace and place them on any pages. The sticker images can be resized by
multi-touch gestures. Some sticker images that are marked as animatable are animated after
placement. After editing, the user can preview the page or play back from the page to ensure
that everything was placed as intended.

Certain pages permit users to replace images as authorized by the content creator. In such
pages, users can tap on the image to be replaced and enter the image substitution mode, which
shows a real-time camera preview. The user can extract an object of interest from the preview
camera screen by applying chroma key filtering shader and may change the chroma key color.

3352 Seo: A Case Study of Combining Two Cross-platform
Development Frameworks for Storybook Mobile App

To change the chroma key filtering color, the user can long-press on the camera screen to
recognize colors in the preview screen and receive immediate visual feedback for the newly
chosen chroma key color. Users can even choose multiple chroma key colors, applying them
on the camera screen in real-time to ensure that the intended image object is correctly
recognized. Once the object extraction is complete, the user can erase unwanted areas from
the captured image or recover the desired area by touch-drawing. To pinpoint the desired area,
the user can zoom in or out. Once the user has completed these actions, they can return to the
storybook page to view the newly replaced image.

The mobile app allows users to maintain multiple edited versions of the same storybook.
Users can also replace some of the wordings in the storybook, changing the heroine’s name to
a loved one. Additionally, users can order offline printing of their personalized storybook
through the mobile app.

3.3 Mobile App Requirements and Analysis
The functions of a storybook mobile app, depicted in the user flow diagram discussed in
Section 3.2, can be broadly categorized into four groups: general UI/UX-driven interactive
tasks, storybook playback, storybook page editing, and image object extraction. The UI/UX
related tasks consists of common mobile-based UI/UX components such as managing user
authentication, searching for storybooks and stickers, purchasing for storybooks and stickers,
managing purchase history, and accessing offline printing request services. These tasks are
relatively easy to implement because many cross-platform development environments are
designed to provide UI/UX-centric business logic effortlessly and seamlessly. They are often
organized into discrete screens, allowing for seamless navigation between screens and
displaying dialogs using a variety of UI transition effects. Thus, this discussion focuses on the
requirements and challenges of the remaining three tasks that are not UI-related.

Storybook Playback
Developing a storybook player in a mobile environment is a complex task, similar in difficulty
to create an electronic book player. The player must handle multiple types of multimedia
content, including images, audio, and text, and synchronize them in real-time. Coordinating a
number of animations between these content types can be particularly challenging, especially
on low-end devices with limited processing power and memory. Additionally, supporting
various screen sizes and resolutions makes it challenging to optimize the player for all devices.

To provide a seamless user experience, the player must prepare page scenes in advance to
ensure smooth transitions from one scene to another. This requires effective memory usage
management, especially when dealing with large numbers of high-resolution images. The
player should also enable fluent navigation back and forth based on user requests, without
causing disruptive experiences.

Some of these challenges cannot be solved solely by the mobile app and may require server-
side help, if applicable. Therefore, developing a robust and user-friendly storybook player in
mobile environment demands a combination of technical expertise, UI/UX design skills, and
careful consideration of user needs and expectations.

Storybook Page Editing
While web-based authoring tools offer the ability to edit and compose the entire page from
scratch, mobile apps provided limited editing features such as attaching or detaching stickers.
In edit mode, this feature seamlessly integrates with page playback, allowing users to review
the current page at any time or ensure uninterrupted playback of the entire storybook. For

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 12, December 2023 3353

attaching images, multi-touch gestures can be used to smoothly move them to the desired
position and make fine adjustments like zooming or scaling. Additionally, it enables users to
move specific layers within the stacked images on a page, altering the layering layout. Thus,
this feature combines page playback, diverse image movement, and transformation capabilities,
leveraging external storybook playback functionality. On the editing screen, typical UI tasks
include loading stickers from a list, selecting and placing them, and navigating to another page
for editing. On mobile devices, smooth real-time processing of image detachment, replacement,
and touch interactions is crucial.

Image Object Extraction
In this system, the storybook creator can place image objects on certain pages that mobile
consumers can modify. These customizable images are referred to as ‘interactive’ images in
this research. In the page editing mode, consumers can view and interact with the interactive
images, and they can enter the image selection mode by tapping on an interactive image. In
the editing mode, interactive images (see Fig. 4(c)) are accompanied by guide images (see Fig.
4(b)) that illustrates the available actions or transformations. Users can select an interactive
image to proceed with replacing the original image with a new one. The replacement image
can be chosen from the mobile device’s photo gallery or captured directly using the camera.
While the former is a common UI task, this research primarily focuses on designing the
functionality for direct image extraction using the camera.

(a) original image

(shown during
playback)

(b) guide image

(c) interactive image
(shown during
editing mode)

Fig. 4. A sample interactive image demonstrating the combining an original image with its guide

image.

When the user taps on an interactive object, the mobile app enter the camera preview mode.
A dotted guide image associated with the interactive object appears on the camera screen,
assisting the user in achieving the desired pose. During this time, the user can visually preview
the extract image object result by displaying the shooting target separated from the background
in real time through chroma key filtering. Furthermore, the user has the option to manually
adjust the brightness, saturation, and color information relevant to the default chroma key
filtering directly on the camera screen, allowing them to immediately assess the level of
separation achieved from the background. The process of modifying the chroma key filter
information should be straightforward and intuitive. With the real-time processing capability,
the user can enhance the extraction quality by either repositioning the subject against a
background that is easier to extract or selectively removing challenging background objects
from the rest of the composition.

3354 Seo: A Case Study of Combining Two Cross-platform
Development Frameworks for Storybook Mobile App

The process of manually removing unwanted portions and restoring desired portions from
the background, as well as modifying the real-time bitmap image after chroma key processing,
demands a high level of responsiveness and real-time capability, especially when performed
through multi-touch interactions.

4. Implementation
This section presents the implementation methodologies employed in the storybook mobile
app. Prior to delving into the specific details, let’s first explore how the storybooks are
managed on the server and transmitted to the app through the network.

For the development environment, we utilize Bitnami WAMPSTACK, which provides a
comprehensive platform. Once the development is completed, we deploy the server code to
Cafe24, a popular web-hosting service in Korea. Through this hosting service, we utilize the
entire LAMPSTACK software suite, including Apache2, PHP, and MariaDB.

4.1 Integrating Development Environments
In this study, we explore the utilization of various cross-platform solutions to improve
performance by creating modules that optimize specific functions within each solution. By
combining these modules, we aim to reduce development time while meeting functional
requirements effectively.

To minimize additional burdens such as increased operational cost due to interoperability
with individual tools, setting up development environments, and developer availability, it is
crucial to limit the number of cross-platform development tools to two widely adopted models
in the industry. Based on this rationale, our study focuses on two primary development tools:
React Native, a widely used framework for mobile app development, and Unity3D, known for
its exceptional rendering performance and suitability for game development.

React Native, built upon React technology, is an open-source web framework developed
by Meta. As a cross-platform solution, React Native focuses on improving responsiveness of
native modules supported by mobile operating systems through JavaScript codes
communicated via bridge channels. When a React Native application is launched on a mobile
device, the operating system initiates a UI thread responsible for handling the user interface.
This UI thread spawns a Javascript thread and a shadow thread. The Javascript thread
processes the developer’s code and delivers it to the shadow thread, which computes the layout
and passes it to the native side through bridge communications.

On the other hand, Unity3D is specifically designed for game development, enabling
developers to create applications with interactive gameplay, high-quality graphics, and
efficient performance. It supports multi-platform development, allowing applications to be
built for various platforms such as mobile devices, desktops, consoles, and even virtual reality
and augmented reality devices. With its built-in editor, Unity3D facilitates the easy import and
management of diverse assets, simplifying overall development process.

In this study, we have selected the React Native development environment as the primary
cross-platform tool for the mobile application development. Given that user interface and user
experience are critical components of general mobile apps, it is crucial to choose a
development tool that facilitates rapid prototyping of various UI/UX effects. Consequently,
we opted for the widely adopted cross-platform tool available at the time.

During the analysis of functional and performance requirements for our content service,
our primary focus was on evaluating how well the React native platform supports these
features. In cases where the React Native platform falls short in meeting the requirements, we

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 12, December 2023 3355

explore alternative solutions utilizing Unity3D.
To integrate these development environments, we employed the method proposed by

Francois Beaulieu [18]. This approach involves building a module within the Unity3D
environment and exporting it to the React Native development environment. Once exported,
React Native recognizes the Unity3D module through Unity View [19], which is a plugin
library facilitating communication between React Native and Unity3D modules via a
dedicated bi-directional channel. Consequently, all functionalities are driven by the React
Native main thread, with the Unity module being controlled by the main thread through the
established communication channel. From the perspective of React Native, Unity3D modules
are treated as conventional native modules. For a visual representation of our integration model,
please refer to Fig. 5.

Fig. 5. Plugging a Unity Module to the React Native Development Environment.

Our integration approach, however, presents several challenges. When working with two
different environments that operate as isolated sandboxes, there is a potential for redundancy
in functionality implemented within both environments. For instance, in a scenario where all
sandboxes are managed through server-established sessions, each sandbox utilizes separate
session information due to their isolated web connections. This leads to complications in
server-side processing. To address this issue, we designated a single communication agent
within the React Native environment and established communication through it, rather than
maintaining separate network agents. However, we observed that this solution introduced
additional communication overheads, resulting in a more complex implementation of business
logic and increased response time delays. Furthermore, the presence of two separate sandboxes
leads to independent access permission requests from the mobile operating system. While
efforts have been made to integrate these independent permission requests, a definitive
solution has not yet been developed.

4.2 Storybook Playback and Page Editing
These two functionalities require a common feature of converting a JSON-formatted
storybook into UI components. The pages within the storybook consists of various elements
(text, audios, images, animation information, etc.) organized hierarchically and rendered
sequentially. This means that earlier elements can be overlapped by later elements during

3356 Seo: A Case Study of Combining Two Cross-platform
Development Frameworks for Storybook Mobile App

rendering. Individual elements are converted into Native UI components provided by React
Native, forming a single page screen.

In the edit mode, after arranging all individual elements, new objects such as stickers can
be inserted, deleted, or modified in specific orders within the page. These newly inserted
objects should be continuously changed on the screen through drag-and-drop, while
maintaining the overall layout of the page. The overall page structure remains unchanged,
while specific parts are animated using the animation library provided by React Native. To
achieve smooth animations, React Native adopts a preloading mechanism where the necessary
animation information is sent to the native thread in advance, eliminating the need for
continuous information exchange between the Javascript thread and the native thread. This
approach is designed to avoid performance degradation. In this study, we utilized the
Reanimated library to effectively use animation code in React Native [20].

In playback mode, all UI elements and media elements arranged on the screen are played
according to the animation timing information. Different animation elements are synchronized
with other media elements and performed sequentially or in parallel. Since React native
preloads animation-related information to the native thread, the animation performance is
proportional to the performance of the native thread, achieving native-level performance.
Performance-critical aspects, such as audio playback or SVG animations like Lottie file
playback, can significantly reduce the UI workload through the use of dedicated libraries [21].
Notably, the simultaneous playback of background music and narration audio, which requires
playing two or more audio files simultaneously, is only possible within the media library
provided by Expo, as other audio-related libraries fail to provide this functionality.

Among the playback and editing features, the most performance-sensitive part is animation
combined with multitouch. In React Native, off-loading is applied to maintain such
performance at the native level, using a third-party library. This enables the mobile app to
provide complex storybook playback and editing features without performance degradation.
Factors directly influencing this performance improvement are addressed through appropriate
utilization of third-party libraries and other techniques during the development of the mobile
app.

An important consideration in these features is the potential for memory resource shortages
due to excessive use of image objects. Given the nature of storybooks, rendering numerous
high-resolution images is often necessary for constructing a single page. Due to the high
demands for image rendering, the mobile app frequently experienced memory shortages.
Additionally, since the playback and editing of storybooks are not limited to a single book but
may involve multiple storybooks, efficient management of images and proactive caching
policies are necessary. In this regard, a server-side approach is employed, where images are
prepared in various resolutions for different mobile devices, and the most appropriate image
files are transmitted to each device [22]. Furthermore, instead of preparing individual images
separately, an approach that combine non-overlapping images into a single composite image
is applied, whose detailed descriptions are beyond the scope of this paper. To accommodate
the use of a large number of image files, various solutions, such as appropriate image data
indexing, and caching, are implemented through an independent image caching mechanism,
reducing the memory requirements and loading time of the mobile app.

4.3 Image Extraction and Editing
Image Object extraction and editing is the key feature of our mobile app. Fig. 6 depicts this
process into six steps. The process begins with selecting an interactive item from a page edit
mode (Step 1). After the selection, the app enters into a photo-taking task. The task can be

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 12, December 2023 3357

divided into two sub-stages: chroma filtering stage (Step 2 and 3) and editing stage (Step 4
and 5). The chroma filtering stage starts with displaying a red-dotted guide line on a camera
surface (Step 2). Using the guide image, the user places objects of interest within an imaginary
guideline rectangle. Here, the default chroma key background color is automatically detected
and the image frame from the camera preview is applied by the chroma key filter and rendered
in real time. Users can change the chroma keying color by long-pressing the screen. The app
collects the target colors from a small area the user presses, averaging them to a single value,
and immediately applies the average value to the newly selected chroma key (Step 3).

Fig. 6. Image Extraction and Editing Process using Chroma Keying.

The editing stage begins when the user takes a picture while cropping the surrounding area
from the current chroma-filtered video frame (Step 4). Cropping an area in the frame is
intended to reduce the image size to a smaller one, but the cropped area can be restored during
post-processing if necessary. Before returning back to the scene, user can remove or restore
crop region with a simple manual finger touch (Step 5). When all final touches to the crop
image are done, the app saves all the resulting images (a high-resolution video frame and its
chroma-filtered edited image) and return to the previous storybook scene with the freshly
replaced image (Step 6).

The two stages can be implemented as a single operation or two separate operations,
depending on the difficulty of implementation. Although they appear to have the similar
requirements in terms of performance, there are distinct differences in the resource utilization
involved. The former is more GPU-intensive because it focuses more on real-time chroma
filtering (usually using a chroma-key shader), while the latter requires higher CPU and
memory utilizations for instance pixel-level image conversion based on the user’s touch
movement.

Implementing these two stages in the React Native environment presents significant
challenges. While it is possible to write shader code in WebGL format for chroma filtering in
React Native, it requires additional mandatory components such as react-native-canvas and
react-native-webview. However, our preliminary attempts using these components have reveal
ed that real-time touch and rendering are not feasible due to certain limitations. The touch

3358 Seo: A Case Study of Combining Two Cross-platform
Development Frameworks for Storybook Mobile App

events, initiated by the user, are first recognized by a native module and then delivered to a
React Native Javascript thread to execute developer specified tasks. After the execution, the
results return back to the native module through a communication channel, as depicted in Fig.
7. This process causes significant lags and jagged animation effects due to the continuous
occurrence of touch events during drawing. Unlike the React Native animation library, there
is no way to offload developer’s code to the native thread, and all React Native canvas-related
libraries face the same problem. Additionally, a single gesture involves a processor-intensive
bitmap Blit operation [23], which modifies nearby image pixels in real-time around the touch
area.

Fig. 7. UI Event Delivery Path on React Native.

These observations are primarily a result of the React Native architecture. To address this
issue, the React Native maintenance team has recently introduced the JavaScript Interface (JSI)
and changed the communication model between the main thread and the native thread. The
new model simplifies the communication model from asynchronous to synchronous operations
but still incurs significant communication overhead between the main thread and the native
thread.

To overcome these limitations, we decided to use the Unity3D solution for the photo-taking
task. Unity3D is well-suited for image manipulation and editing, and it eliminates the need for
communication between the native thread and the React native main thread.

In Unity, the chroma key processing logic was implemented using the
ChromaKey/Unlit/Transparent shader based on the uChromaKey shader asset, which is
provided as open source [24]. By leveraging shaders, it becomes easier to replace them with a
better one, simplifying the refinement of image extraction logic. The chroma key color can be
modified through communication between the shader and the app. Additionally, the Unity
graphics library provides the Blit function, which enables reading, removing, or applying a
specific chroma key color to designated areas of a pixel image loaded onto a RenderTexture.
During the editing process, operations such as removing desired pixel regions or restoring
them can be implemented using the libraries provided by Unity. These various pixel-level
image manipulation tasks can be accomplished using the functionalities offered by Unity. It is
important to note that such operations are not feasible in React Native.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 12, December 2023 3359

5. Evaluation
In this section, we will examine how well a mobile app performs when developed using two
cross-platform development environments without causing any performance issues. In
Section 5.1, we first evaluate how well our integrated methodology fulfills various functional
requirements by extensively experimenting a test scenario, which covers all tasks. In Section
5.2, we further investigate whether the transmission delay of a newly captured chroma key
filtered image from a mobile app to a server causes any noticeable effect against users’
experience after the image composition task.

For the experiment, we developed a mobile storybook app, using Unity3D (version
2019.2.17.f1) and React Native (version 0.62). All the cross-platform solutions produce
binaries runnable on Android and iOS. Since our research group is more familiar with the
Android development environment and has a variety of Android testing devices, we mainly
conducted the testing on Android.

5.1 Reliability of Integration Methodology
This evaluation metric is intended to validate the reliability of our proposed integration
methodology by observing abnormal behaviors or unexpected errors when performing
complex image substitution task on various Android mobile devices. The image substitution
task includes the all following actions in sequence.

1) Launch a mobile app.
2) Select a storybook from the list of storybooks randomly.
3) Select a page from the book randomly.
4) Select one of interactive images in the page randomly to replace the image.
5) Apply different background color for chroma keying and see whether an object of

interest is extracted in the camera preview mode.
6) Take a photo from the chroma-key filtered camera preview mode.
7) Erase unwanted area from the photo.
8) Click to submit a button to send the chroma-key filtered image to the server.
9) Make sure newly changed image is placed on the right location.

Table 1. Eleven different types of Android devices and versions used for evaluation

Android Version Model Name

10.0 Samsung Galaxy S10e, Samsung Galaxy S20,
Samsung Galaxy Note 10+

9.0 LG V20, Samsung Galaxy Note 9
7.0 Samsung A8, Samsung A7

6.0 Samsung Galaxy S5, Samsung Note 4,
Samsung A5

5.0 Samsung Galaxy Note 3

In the experiment, a total of 5 storybooks were preloaded on all Android devices, whose

specifications are detailed in Table 1. During a preliminary experimentation before the
evaluation, we found that there were small functional glitches on different Android version.
On the LG V20, one of low-budget Android devices, running on Android version 8.0, the test
app immediately crashed soon after the loading. This symptom was due to a minor design flaw
by Android, which causes the app crash right after showing a splash screen (with full screen
mode) starts when the app starts. We quickly fixed the problem by updating the Android
version to 9.0. That’s why Android version 8.0 was omitted in our testing environment shown

3360 Seo: A Case Study of Combining Two Cross-platform
Development Frameworks for Storybook Mobile App

in Table 1. After fixing above issue, we also observed that one A7 device from Samsung,
reported a strange behavior occurring when the chroma key shader didn’t work properly in the
graphics hardware of the device. In the meanwhile, there reported no problems on other
devices during real-time chroma key filtering process. The problem only occurred when
editing a photo taken during the photo-taking task. This problem was quickly corrected by
using a software-based correction method, but its chroma key editing speed was slow
compared to other devices.

For the verification, a total of 5 external users, who never used the mobile app before,
participated in the experiment and were randomly assigned to fulfill the substitution task
mentioned above using some of 11 mobile devices. In each storybook, the users were asked to
select 5 pages randomly, execute image composition task on a randomly chosen image object
on each page, and repeat the tasks three times. Thus, a total of 825 image composition tasks -
that is, 5 (storybooks)×11 (mobile devices)×5 (pages)×3(repetition) - were performed. During
the experiments, any abnormal operations such app crashes or freezing were considered
failures regardless of their causes, such as network failure or server crashes.

 During the experiments, we occasionally experienced transmission delays due to
unexpected network transmission degradation at the server, but all 825 tasks were successfully
executed. From this result, we confirmed that our integration methodology can operate with
no significant performance issues even when experimenting complex image composition tasks.

Fig. 8. Transmission Delays of Chroma-key Filtered Images from A Mobile App to a Server.

5.2 Effect Reliability of Integration Methodology
The data upload speed of chroma-keyed images depends on the image size. For a general
compressed image file that is not chroma-keyed, the size greatly depends on the shooting
resolution, typically averaging 2MB for a 1080×1920 image resolution. Therefore, reducing
the image file size through chroma key processing has a significant impact on the response
time performance.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 12, December 2023 3361

During our experiments, we recorded the end-to-end transmission delays for all the images
generated by chroma key processing. We then plotted the individual delays as a function of
input chroma key filtered image sizes in Fig. 8. The figure shows the distribution of the upload
response time (in milliseconds) of the image file extracted through the additional processing
of the chroma key image by size (bytes) of the chroma key image file. The average response
time is 2.962 seconds (±2.566) and the average image file size is 979KB (±391KB). The
response time of the median value with reduced sensitivity according to the outlier value was
2.214 seconds, and the median file size was 954KB. This result indicates that the effect of any
outliers was insignificant.

As shown in the figure, there was a rare spike in transmission delays during the test, but it
was impaired soon after. For smaller image sizes, transfer rate is lower than for large images.
The larger the image file is, the higher the transfer speed, but the greater than transfer
variability. As shown in the figure, the transmission of a captured image after chroma keying
to a server takes more than 2 seconds with no further post-processing at the server-side.
Although an upload delay of around 2 seconds may be acceptable for many users, it still needs
room for improvements. We expect that lowering filtered image size will reduce the
transmission delays, improving the user experience for the app.

6. Conclusions and Future Work
Cross-platform technology allows developers to create software that can be used on multiple
platforms with a single source code. This results in lower development and maintenance costs
and higher productivity compared to native development methodologies. React Native is one
of popularly used cross-platform development solutions that makes it easy to develop UI/UX
related software components using proven mature web technologies. However, it is not
suitable for working with pixel-level image manipulations in real time. On the other hand,
Unity3D is equipped with libraries that allows developers to easily develop components that
require complex calculations such as real-time image rendering, pixel-level image
manipulation, and GPU-driven shader-heavy operations. But it is relatively slower when
developing complex UI/UX—specific tasks.

In this study, we introduced a case study of developing a storybook mobile app with various
functionalities, including storybook playback, editing, and image extraction. These
functionalities are relatively complex and challenging to implement using a single cross-
platform development tool. Instead of relying solely on one development environment, we
propose a new methodology that combines different cross-platform development
environments. We have verified through objective evaluations, conducted by external parties,
that such integration can seamlessly integrate complex tasks. However, integrating more than
two cross-platform solutions may not be appealing, as it could lead to concerns regarding
developer availability, particularly for small-sized mobile app development companies. By
leveraging well-recognized cross-platform solutions, we demonstrated that integration can be
achieved in the development of complex tasks, as showcased in our customized storybook
mobile app. In summary, we have proposed a new development method that integrates
different cross-platform solutions when building highly complex and performant mobile apps.
We have verified the feasibility of our method by developing a storybook mobile app.

Nevertheless, the integration process comes with certain consideration. While it is
beneficial to leverage the advantages of individual cross-platform solutions, there may be
unforeseen issues such as sandbox redundancy or unexpected functional burdens, including
redundant permission requests. Despite these challenges, we believe that combining two cross-

3362 Seo: A Case Study of Combining Two Cross-platform
Development Frameworks for Storybook Mobile App

platform solutions can be applicable to various functional and performance requirements,
enabling the development of more sophisticated mobile applications at reduced costs and
shorter development timelines.

Despite meeting all functional requirements, our mobile app’s user experience could be
improved. To maintain high-quality object extraction, we combined chroma-key filtering and
manual editing, which results in relatively high transmission delays (over 2 seconds on average
in our tests) when uploading chroma-keyed image files, which degrades the user experience.
Therefore, reducing image files while maintaining extraction quality would significantly
improve the user experience.

The latest deep learning-based image segmentation methods [25] can extract desired
objects more clearly and separating chroma-key masks from images, enabling independent
delivery of resulting image files, is expected to further reduce transmission delay.

References
[1] Andreas Biørn-Hansen, Tim A. Majchrzak, and Tor-Morten Grønli, “Progressive Web Apps: The

Possible Web-native Unifier for Mobile Development,” in Proc. of the 13th International
Conference on Web Information Systems and Technologies WEBIST, pp. 344-351, 2017.
Article (CrossRef Link)

[2] Tina Beranic, Patrik Rek, and Marjan Hericko, “Adoption and Usability of Low-code/no-code
Development Tools,” in Proc. of Central European Conference on Information and Intelligent
Systems, pp. 97-103, 2020.

[3] JetBrains, “Cross-platform Mobile Frameworks used by Software Developers Worldwide from
2019 to 2021,” Statista, 2021. [Online] Available:
https://www.statista.com/statistics/869224/worldwide-software-developer-working-hours

[4] Gabriel Peal, “Sunsetting React Native,” Airbnb Tech Blog (Medium), 2018. [Online] Available:
https://medium.com/airbnb-engineering/sunsetting-react-native-1868ba28e30a

[5] Andreas Biørn-Hansen, Tor-Morten and Grønli and Gheorgphita Ghinear, “A Survey and
Taxonomy of Core Concepts and Research Challenges in Cross-Platform Mobile Development,”
ACM. Computing Surveys, vol. 51, no. 5, pp. 1-34, 2018. Article (CrossRef Link)

[6] Timothy Yudi Adinugroho, Reina, and Josef Bernadi Gautama. “Review of multi-platform mobile
application development using webview: Learning management system on mobile platform,”
Procedia Computer Science, vol. 59, pp. 291-297, 2015. Article (CrossRef Link)

[7] Vipul Kaushik, Kamali Gupta, and Deepali Gupta, “React Native Application Development,”
International Journal of Advanced Studies of Scientific Research, vol. 4, No. 1, 2019.
Article (CrossRef Link)

[8] Larry Heimann, and Oscar Veliz, “Mobile Application Development in Flutter,” in Proc. of the
53rd ACM Technical Symposium on Computer Science Education V.2, pp. 1199-1199, 2022.
Article (CrossRef Link)

[9] Dan Hermes, Xamarin Mobile Application Development: Cross-Platform C# and Xamarin.Forms
Fundamentals, 1st ed. Berkeley, CA, USA: Apress, 2015. Article (CrossRef Link)

[10] Jingming Xie, “Research on Key Technologies based Unity3D Game Engine,” in Proc. of 2012
7th International Conf. on Computer Science and Education (ICCSE), pp. 695-699, 2012.
Article (CrossRef Link)

[11] Andrew Sanders, An introduction to Unreal engine 4, A. K. Peters, Ltd., 2016.
Article (CrossRef Link)

[12] A. Smith, and J. Blinn, “Blue Screen Matting,” in Proc. of SIGGRAPH ’96, pp. 259-268, 1996.
Article (CrossRef Link)

[13] Swarnendu Ghosh, Nibaran Das, Ishita Das, and Ujjwal Maulik, “Understanding Deep Learning
Techniques for Image Segmentation,” ACM Computing Surveys, vol. 52, no. 4, 2019, Article no.
73. Article (CrossRef Link)

https://doi.org/10.5220/0006353703440351
https://www.statista.com/statistics/869224/worldwide-software-developer-working-hours
https://medium.com/airbnb-engineering/sunsetting-react-native-1868ba28e30a
https://doi.org/10.1145/3241739
http://dx.doi.org/10.1016/j.procs.2015.07.568
https://ssrn.com/abstract=3330011
https://doi.org/10.1145/3478432.3499158
https://doi.org/10.1007/978-1-4842-0214-2
https://doi.org/10.1109/ICCSE.2012.6295169
https://dl.acm.org/doi/10.5555/3099885
https://doi.org/10.1145/237170.237263
https://doi.org/10.1145/3329784

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 12, December 2023 3363

[14] A. Howard, M. Sandler, B. Chen, W. Wang, L.-C. Chen, M. Tan, G. Chu, V. Vasudevan, Y. Zhu,
R. Pang, H. Adam, and Q. Le, “Searching for MobileNetV3,” in Proc. of 2019 IEEE/CVF
International Conference on Computer Vision (ICCV), pp. 1314-1324, 2019.
Article (CrossRef Link)

[15] Machine Learning Research at Apple, “On-device Panoptic Segmentation for Camera using
Transformers,” Oct. 2021. [Online] Available:
https://machinelearning.apple.com/research/panoptic-segmentation

[16] Barbara Leporini, and Clara Meattini, “Personalization in the Interactive EPUB 3 Reading
Experience: Accessibility Issue for Screen Reader Users,” in Proc. of the 16th International Web
for All Conference, pp. 1-10, 2019. Article (CrossRef Link)

[17] R. Battle, and E. Benson, “Bridging the semantic Web and Web 2.0 with Representational State
Transfer (REST),” Journal of Web Semantics, vol. 6, no. 1, pp. 61-69, 2008.
Article (CrossRef Link)

[18] Francois Beaulieu, “Part 1. Show Unity3D view in React-Native application. Yes it’s possible!,”
Feb. 2018. [Online] Available: https://medium.com/@beaulieufrancois/show-unity3d-view-in-
react-native-application-yes-its-possible-852923389f2d

[19] React Native Unity View, “react-native-unity-view,” Jan. 2019. [Online] Available:
https://www.npmjs.com/package/ react-native-unity-view Accessed on: Feb 1, 2023

[20] Software Mansion, “About React Native Reanimated,” [Online] Available:
https://docs.swmansion.com/react-native-reanimated/docs/ Accessed on: Apr. 6, 2023

[21] T. Hidayat, and B. D. Sungkowo, “Comparison of Memory Consumptive Against the Use of
Various Image Formats for App Onboarding Animation Assets on Android with Lottie JSON,” in
Proc. of 2020 3rd International Conference on Computer and Informatics Engineering (IC2IE),
Yogyakarta, pp. 376-381, 2020. Article (CrossRef Link)

[22] Wenjie Zou, Jiarun Song, and Fuzheng Yang, “Perceived Image Quality on Mobile Phones with
Different Screen Resolution,” Mobile Information Systems, vol. 2016, 17 pages, 2016, article ID
9621925. Article (CrossRef Link)

[23] Rob Pike, Bart Locanthi, and J. Reiser, “Hardware/software Trade-offs for Bitmap Graphics on
the Blit,” Software: Pactice and Experience, vol. 15, no. 2, pp. 131-151, 1985.
Article (CrossRef Link)

[24] Chroma key shader asset for Unity, “uChromaKey,” 2021. [Online] Available:
https://github.com/hecomi/uChromaKey

[25] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Tete, S. Whitehead, A.C.
Berg, W.-W. Lo, P. Dollar, R. Girshick, “Segment Anything,” in Proc. of the IEEE/CVF
Internaltional Conf. on Computer Vision, pp. 4015-4026, Oct. 2023. Article (CrossRef Link)

Beomjoo Seo, He received the B.S. and M.S. degrees from the Department of Computer
Engineering, Seoul National University in 1994 and 1996, respectively, and the Ph.D. degree
in Computer Science from the University of Southern California in 2008. He was formerly a
Senior Research Fellow at the School of Computing, National University of Singapore. He is
currently an assistant professor at the School of Games in Hongik University.

https://doi.org/10.1109/ICCV.2019.00140
https://machinelearning.apple.com/research/panoptic-segmentation
https://doi.org/10.1145/3315002.3317564
https://doi.org/10.1016/j.websem.2007.11.002
https://medium.com/@beaulieufrancois/show-unity3d-view-in-react-native-application-yes-its-possible-852923389f2d
https://medium.com/@beaulieufrancois/show-unity3d-view-in-react-native-application-yes-its-possible-852923389f2d
https://www.npmjs.com/package/react-native-unity-view
https://docs.swmansion.com/react-native-reanimated/docs/
https://doi.org/10.1109/IC2IE50715.2020.9274612
https://doi.org/10.1155/2016/9621925
https://doi.org/10.1002/spe.4380150203
https://github.com/hecomi/uChromaKey
https://doi.org/10.48550/arXiv.2304.02643

